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Abstract
The electron states in a cylindrical quantum well with a convex bottom in
a magnetic field directed along the wire axis are investigated. The electron
wavefunctions, depending on the quantum well characteristics and the magnetic
field induction, are found. The absorption coefficient of a monochromatic
linearly polarized light wave caused by intersubband transitions of electrons in
the quantum wire is calculated. The selection rules are considered and analytical
expressions for the absorption coefficient are presented for two cases of light
wave polarization.

1. Introduction

The advances of modern semiconductor technologies led to the creation of low dimensional
heterostructures where electrons are localized at size quantization levels [1]. These
quantum wells (QW), quantum wires (QWW) and quantum dots (QD) are widely used in
microelectronic and nanoelectronic devices, as well as in optoelectronics. In particular, lasers
and detectors working in visual, short range and middle IR regions [2] are often based on such
structures.

Among various methods of investigation of low dimensional structures the analysis of
the optical absorption spectrum plays an important role. The investigation of interband light
absorption in QWW has shown that it can be controlled by means of changing the sizes and
shapes of the QWW, and with the help of external electric and magnetic fields [3–7].

The investigation of intraband absorption in QWW [8, 9] is very important as well. Today,
the effects related to transitions of charge carriers from the localized levels to continuum states
are intensively investigated, because of their use in new type IR receivers [10, 11].

In the present work the electronic states are investigated and the intersubband absorption
coefficient of a monochromatic light wave is calculated for the semiconductor cylindrical
QWW with a convex bottom in a magnetic field, directed along the wire axis. The
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selection rules are revealed and analytical expressions for the absorption coefficient are found,
depending on the wire parameters, magnetic field induction and light wave polarization.

2. Electron states

Let us consider a cylindrical QW with a convex bottom in a magnetic field. The exact profile
of a QWW bottom is provided by growth conditions. So, convexity of the bottom of a
Ga1−xAlx As/Ga1−yAlyAs QWW can be achieved by smoothly varying the alloy concentration
y between the peak value at the QWW centre and the zero value on its border [12, 13]. To
simplify the calculations we neglect the mismatch of electron effective mass in QWW and the
surrounding medium. The dielectric inhomogeneity of the system is neglected as well.

The Hamiltonian of an electron in the system considered has the form

Ĥ = 1

2m

(
�̂p + e �A0

)2 + V (ρ), (1)

where m is the electron effective mass, �A0 is the vector potential of a magnetic field. Within
the framework of the model considered the confining potential

V (ρ) = U0

(
1 − ρ2

R2

)
, for ρ � R; V (ρ) = V0, for ρ > R, (2)

where R is radius of the wire, U0 is the convexity parameter of the QW bottom, V0 is the height
of the well wall (furthermore it is supposed that V0 > U0). For the homogeneous magnetic
field, directed along the wire axis (z axis), we shall take the vector potential as �A0 = �B × �ρ/2;
hence, in cylindrical coordinates only the component Aϕ = Bρ/2 will be distinct from zero.

The eigenfunctions of the Schrödinger equation can be presented as

ψnlk(ρ, ϕ, z) = 1√
2πL

ei(lϕ+kz)gnl(ρ), (3)

where L is the length of the wire, k is the wavenumber, n, l are quantum numbers, gnl(ρ) is the
radial wavefunction. Using dimensionless parameters x = ρ/aB, a = R/aB, εnl = Enl/ER,
v0 = V0/ER, u0 = U0/ER, γ = a2

B/ l2
B, where lB = (h̄/eB)1/2 is the magnetic length,

aB = h̄2χ/me2 is the effective Bohr radius and ER = me4/2h̄2χ2 is the effective Rydberg
energy, the Schrödinger equation for a radial wavefunction is rewritten as

d2g

dx2
+ 1

x

dg

dx
−

(
l2

x2
+ γ 2x2

4
+ γ l

)
g + (εnl − v(x)) g = 0. (4)

The solutions of equation (4) can be presented in the form

gnl(x) = C1

{
e−βx2/2

(
βx2

)|l|/2
F

(−ν1, |l| + 1; βx2
)
, x � a,

C2e−γ x2/4
(
γ x2/2

)|l|/2
U

(
ν2, |l| + 1; γ x2/2

)
, x > a,

(5)

where F(p, q; x) and U(p, q; x) are confluent hypergeometric functions [14],

β =
(
γ 2a2 − 4u0

)1/2

2a
, ν1 = εnl − u0 − γ l

4β
− |l| + 1

2
, ν2 = v0 − εnl

2γ
+ |l| + l + 1

2
. (6)

The normalization constants C1 and C2 from equation (5) are given by the expressions

C1 =
{∫ a

0
e−βx2 (

βx2
)|l|

F2
(−ν1, |l| + 1; βx2

)
x dx

+ C2
2

∫ ∞

a
e−γ x2/2

(
γ x2/2

)|l|
U 2

(
ν2, |l| + 1; γ x2/2

)
x dx

}−1/2

, (7)

C2 = exp

[
−

(
β

2
− γ

2

)
a2

](
2β

γ

)|l|/2 F
(−ν1, |l| + 1; βa2

)

U
(
ν2, |l| + 1; γ a2/2

) . (8)



Intersubband absorption in quantum wire with a convex bottom in a magnetic field S2163

The eigenvalues εnl are determined from the continuity condition for the logarithmic
derivative of wavefunction at x = a and are roots of the equation

d

dx
ln

[
e−βx2/2

(
βx2

)|l|/2
F

(−ν1, |l| + 1; βx2
)]

x=a

= d

dx
ln

[
C2e−γ x2/4

(
γ x2/2

)
U

(
ν2, |l| + 1; γ x2/2

)]
x=a

. (9)

3. Light absorption in QWW with a convex bottom

To calculate the absorption coefficient of linearly polarized monochromatic radiation in QWW
we use the known expression [15]

α(ω) = χ1/2

c

2π

h̄

∑
i, f

∣∣∣〈 f | Ĥ ′ |i〉
∣∣∣
2
( fi − f f )δ(E f − Ei − h̄ω), (10)

where ω and c are the frequency and velocity of the light wave, χ is the dielectric constant
of the system, 〈 f | Ĥ ′ |i〉 is the matrix element of the electron–photon interaction, fi , f f are
the Fermi–Dirac distribution functions for initial and final states, respectively, Ei , E f are the
energies of these states. The Hamiltonian of the electron–photon interaction is

Ĥ ′ = − ieh̄

mc

( �A∇
)
, (11)

where �A is the vector potential of the light wave. The matrix element included in equation (10)
can be presented as

〈 f | Ĥ ′ |i〉 = −i

(
8πe2h̄3

m2χωLS

)1/2

I f i , (12)

where S is the cross section of the area where the photon absorption takes place, and

I f i =
∫
ψ∗

f (�r)ei�q�r
(�ξ∇

)
ψi (�r)d�r . (13)

In equation (13) ψi (�r), ψ f (�r) are the wavefunctions of initial and final states, �q and �ξ
are the wavevector and the polarization vector of the electromagnetic wave, respectively. If
we write down the operator ∇ from equation (13) in cylindrical coordinates, it is possible to
present I f i as

I f i =
(
�eρ�ξ

)
I (1)f i +

(
�eϕ�ξ

)
I (2)f i +

(
�ez�ξ

)
I (3)f i , (14)

where �eρ, �eϕ, �ez are the unit directing vectors, and

I (1)f i = δl,l′δk,k′+qz

∫ ∞

0
eiqρρgn′l′(ρ)

dgnl(ρ)

dρ
ρ dρ, (15a)

I (2)f i = lδl,l′ δk,k′+qz

∫ ∞

0
eiqρρgn′l′ (ρ)gnl(ρ)dρ, (15b)

I (3)f i = kδl,l′δk,k′+qz

∫ ∞

0
eiqρρgn′l′(ρ)gnl(ρ)ρdρ. (15c)

The quantities I (m)f i (m = 1, 2, 3) contain the selection rules for intersubband transitions
and for the arbitrary direction of light wave propagation towards the axis of the wire.

We consider two special cases.
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(1) The light wave propagates perpendicular to the z axes (�eρ �ξ = 0, �eϕ �ξ = 0, �ez �ξ =
1, qz = 0). With the help of equations (14) and (15c) for the matrix element of the electron–
photon interaction (12) we obtain

〈 f | Ĥ ′ |i〉 =
(

8πe2h̄3

m2χωLS

)1/2

kδl′,lδk′,k

∫ ∞

0
eiqx gn′l(x)gnl(x)x dx, (16)

where q is the dimensionless wavevector of the photon. The presence of Kronecker symbols in
equation (16) specifies selection rules l = l ′ and k = k ′ at intersubband transitions.

After substitution of equation (16) into equation (10) and under the assumption that final
states are empty (low temperatures), for the absorption coefficient we obtain

α(ω) = 16πe2h̄2

cm2χ1/2ωS

∑
nn′l

∫ kF

0
k2 f

(
Enl + h̄2k2/2m

)
dk

×
∣∣∣∣
∫ ∞

0
eiqx gn′l(x)gnl(x)x dx

∣∣∣∣
2

δ (En′l − Enl − h̄ω) , (17)

where kF = πne/2 is the Fermi wavenumber for the one-dimensional electron gas, ne is the
linear concentration of charge carriers. It is necessary to note that for the characteristic values
of ne ≈ 106 cm−1 CC gas can be considered strongly degenerate already at T < 100 K.

For the electronic transitions from the state n = 1, l = 0 to the states n′ = 2, l = 0 and
n′ = 3, l = 0, for the absorption coefficient we obtain

α(�) = α
‖
0

�

∑
n′=2,3

∣∣∣∣
∫ ∞

0
eiqx gn′0(x)g10(x)x dx

∣∣∣∣
2

δ (εn′0 − ε10 −�) ,

α
‖
0 = 16π4e2

3h̄c

n3
ea4

B

χ1/2S
, (18)

where ε10 and εn′0 are the dimensionless energies of initial and final states, respectively, � is
the dimensionless photon energy of incident light.

Let us note that for the characteristic value ε20 − ε10 ∼ 20, the dimensionless photon
wavevector q � 2 × 10−2; hence in the wire region qx � qa ∼ 10−2  1. At greater
values of x due to the exponential decrease of the gn0(x) functions and exponent oscillations,
the integrals are of the order of 10−3, and α(�) ∼ 10−2 cm−1.

(2) Now it is assumed that the light wave propagates along the z axis (�eρ �ξ = 1, �eϕ�ξ =
0, �ez�ξ = 0 qρ = 0). With the help of equations (14) and (15a) for the matrix element of the
electron–photon interaction we obtain

〈 f | Ĥ ′ |i〉 =
(

8πe2h̄3

m2a2
BχωLS

)1/2

δl,l′ δk′,k+qz

∫ ∞

0
gn′l′(x)

dgnl(x)

dx
x dx . (19)

As long as the characteristic values are k ∼ kF ∼ ne ∼ 106 cm−1, and qz ∼ 104 cm−1,
then k ′ = k + qz ≈ k and the selection rules obtained are the same as in the previous case.

After substitution of equation (19) into equation (10), for the absorption coefficient we
obtain

α(ω) = 16πe2h̄2

cm2a2
Bχ

1/2ωS

∑
nn′l

∫ ∞

0
f
(
Enl + h̄2k2/2m

)
dk

×
∣∣∣∣
∫ ∞

0
gn′l′ (x)

dgnl(x)

dx
x dx

∣∣∣∣
2

δ (En′lk − Enlk − h̄ω) . (20)
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Figure 1. Dependence of the electron energy on the dimensionless radius of the QWW for various
values of the convexity parameter (a) and magnetic field (b) at l = 0.

Taking into account the normalization condition for the distribution function and
considering electronic transitions from the state n = 1, l = 0 to the states n′ = 2, l = 0
and n′ = 3, l = 0, for the absorption coefficient we obtain

α(�) = α⊥
0

�

∑
n′=2,3

∣∣∣∣
∫ ∞

0
gn′0(x)g

′
10(x)x dx

∣∣∣∣
2

δ (ε20 − ε10 −�), α⊥
0 = 16π2e2

h̄c

nea2
B

χ1/2S
. (21)

It is necessary to note that using this approach it is possible to take into account various
sources of energy level broadening (carrier scattering, temperature spreading etc) if instead of
delta functions, we insert Lorentzians in the expression for the absorption coefficient [15].

4. Discussion of the results

Numerical calculations were carried out for the GaAs/Ga1−x AlxAs system, with parameter
values m = 0.067 m0 (m0 is the free electron mass), χ = 13.18, ER = 5.2 meV, aB = 104 Å,
v0 = 50 (alloy concentration x ≈ 0.35) [16]. The γ = 1 value for GaAs corresponds to the
magnetic field induction value B = 6 T.

In figure 1(a) the dependences of the electron energy for states with l = 0 on the
dimensionless radius of the QWW are presented for various values of u0 at γ = 0.3. As
one can see from the figure, with increase of the QWW radius, the energy levels go down and
one by one enter the well because of the decrease of the role of size quantization. Note that
in the area 0 � γ � 0.4 the magnetic length is more than the QWW radius; therefore the
magnetic field weakly influences the energy levels inside the well. Outside of the well there are
discrete Landau levels. At γ → 0 the distance between Landau levels decreases, and at γ = 0
outside the well the spectrum is continuous. In the case of u0 = 0 (solid lines) the energy levels
for QWW with a rectangular confining potential of finite depth are obtained. With the increase
of u0 the energy levels are shifted to the high energy region (the doted and dashed lines), which
is caused by ‘expulsion’ of electrons from the central region of the QWW.

In figure 1(b) the dependences of the electron energy on the dimensionless radius of the
QWW are presented (at l = 0) for various values of the magnetic field induction at the fixed
value u0 = 15. With increase of the QWW radius the energy levels decrease because of
the decreasing role of the size quantization. With increase of γ the influence of the magnetic
quantization becomes stronger, and energy levels are shifted to a high energy region (the dashed
and solid lines). In figure 1(b) one can see that, as distinct from the previous case, at εn0 � v0
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Figure 2. Dependences of the absorption threshold (a) on convexity parameter u0 for various values
of the magnetic field induction, (b) on magnetic field induction for various values of u0.

there are discrete energy levels. Such behaviour is caused by the increase of the effective
confining potential while moving away from the wire axis in the presence of a magnetic field
(proportional to ρ2).

In figure 2(a) the dependence of the light absorption threshold on the convexity parameter
of the QWW bottom is presented for various values of the magnetic field induction at fixed
value of the QWW radius. Solid lines correspond to transitions from the ground state to the
state with n′ = 2, and dashed lines to transitions to the state with n′ = 3. At γ = 0.3 with
the increase of u0 the threshold value first decreases, and then starts to increase. This is caused
by the fact that when u0 is growing (still remaining small in value) the ground state energy
increases faster than energies of excited states. In the case of large values of u0 a particle in the
ground state is pushed out from the central region of the QWW, and the threshold value starts to
increase. With increase of the magnetic field the particle becomes located in the central region
of the QWW and the region where the absorption threshold decreases becomes larger (the point
of minimum is shifted to the right).

In figure 2(b) the dependence of the absorption threshold on the magnetic field induction
is presented for various values of the QWW bottom convexity parameter at fixed value of the
QWW radius. Solid lines correspond to the transition from the ground state to the state with
n′ = 2 and dashed lines to the state with n′ = 3. As one can see from the figure, at small values
of u0 the absorption threshold value increases with increase of the magnetic field, because the
excited states are more sensitive to magnetic field values. For large values of u0 (u0 = 40) a
particle in the ground state is located near the QWW border. Therefore with increase of the
magnetic field the ground state energy is promptly increased, which appears in a decrease of
the absorption threshold value (there is a point of minimum).

In figure 3 the dependence of the absorption coefficient (in terms of α⊥
0 = 2.5×104 cm−1)

on the dimensionless photon energy for various values of u0 (figure 3(a)) and the magnetic
field induction (figure 3(b)) at a fixed value of the QWW radius R = 1.5aB is presented for the
case when the light wave propagates along the axis z. In the figures the first peak corresponds
to transitions from the ground state to the state with n′ = 2, and the second peak to ones to
the state with n′ = 3. With increase of u0 and γ the maxima of the curves are shifted to the
region of low energies because of the decrease of the absorption threshold value. It should be
noted that this decrease has nonmonotonic behaviour because of the similar behaviour of the
absorption threshold.

Thus introducing a new parameter, namely, the convexity of the QWW bottom, together
with the magnetic field creates an additional opportunity for rather efficient control of
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Figure 3. Dependence of the absorption coefficient on the dimensionless energy of incident light.

wavefunctions and the energy spectrum of charge carriers, which, in turn, allows one to control
matrix elements, optical transition probabilities and oscillator strengths.
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